If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+3x-810=0
a = 3; b = 3; c = -810;
Δ = b2-4ac
Δ = 32-4·3·(-810)
Δ = 9729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9729}=\sqrt{9*1081}=\sqrt{9}*\sqrt{1081}=3\sqrt{1081}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{1081}}{2*3}=\frac{-3-3\sqrt{1081}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{1081}}{2*3}=\frac{-3+3\sqrt{1081}}{6} $
| (1+r/12)^12=1.12 | | 65/1300=x | | 9–2x=3 | | 12=-2p-5 | | 2x*x*x*x-9x*x*x+37x+30=0 | | –19=3x+(–7) | | -11=5x+6 | | 2=-62/7x | | -9(v+2)+4v+7=7v=10 | | 26+5x=-4 | | 3.4x2.7=918 | | 8+2x=58+-8x | | 124x+20+4=24 | | 38.2=52-x | | 2y=1y+1y | | 180/x=15 | | 11=1+2y | | 7=-2+v/3 | | 4a2+25=0 | | 6(3x+11=30 | | x.2+10= | | (x.2)+10= | | 63÷7=y | | 100=100x111 | | 8-3x+3x=4 | | 3/x+7=18 | | 3=y-2= | | 77+6x+3=9x+44 | | -58=m-38 | | 7+h=-7 | | 19+f=33 | | -4/5x=-80 |